Nucleation and strain-stabilization during organic semiconductor thin film deposition
نویسندگان
چکیده
The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.
منابع مشابه
Simulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition
The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...
متن کاملDeterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor−Liquid−Solid Growth Mode
A method for growth of ultralarge grain (>100 μm) semiconductor thin-films on nonepitaxial substrates was developed via the thin-film vapor−liquid−solid growth mode. The resulting polycrystalline films exhibit similar optoelectronic quality as their single-crystal counterparts. Here, deterministic control of nucleation sites is presented by substrate engineering, enabling user-tuned internuclei...
متن کاملGrowth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition
We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...
متن کاملAnomalous Scaling Behavior in Polymer Thin Film Growth by Vapor Deposition
As a first step to understand anomalous kinetic roughening with multifractality in recent experiments of the vapor deposition polymerization (VDP) growth, we study a simple toy model of the VDP growth in a (1+1)-dimensional lattice, along with monomer diffusion, polymer nucleation, limited active end bonding, and shadowing effects. Using extensive numerical simulations, we observe that the glob...
متن کاملTuning of the electrical characteristics of organic bistable devices by varying the deposition rate of Alq3 thin film
Organic bistable devices with an Al/Alq3/n-type Si structure are investigated at different deposition rates of Alq3 thin film. We can obtain current–voltage characteristics of these devices similar to those of metal/organic semiconductor/metal structures that are widely used for organic bistable devices. The bistable effect of the Al/Alq3/n-type Si structure is primarily caused by the interface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016